How was the quadratic formula obtained.

We want a solution to ax^2+bx+c=0. Complete the square to get a[(x+b/2a)^2 -(b^2)/(4a^2)]+c=0. Expalding brackets and rearanging gets a(x+b/2a)^2=(b^2)/4a -c. Divide by a to get (x+b/2a)^2= b^2/4a^2 -c/a=(b^2-4ac)/4a^2. Then root each side tot get (x+b/2a)=+-(root(b^2-4ac))/2a. Then simply move over the b/2a to get x=-b/2a+- (root(b^2-4ac))/2a=(-b+-(root(b^2-4ac)))/2a.

JH
Answered by Jon H. Maths tutor

3710 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


Differentiate the function y=4sqrt(x)


Prove 2^n >n for all n belonging to the set of natural numbers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning