Show that 12 cos 30° - 2 tan 60° can be written in the form root (k) where k is an integer.

To answer these questions, students must know the values of cos30 and tan60. If you don't know them off by heart, you can work them out using an equilateral triangle.

cos 30° = adj / hyp = root(3) / 2

tan 60° = opp / adj = root(3) / 1 = root(3)

Once we know these values we can plug them into the original expression and find that it can be written as root(48). Careful, 4root(3) is not the right answer and you'll lose some marks, because the question does not ask for an integer at the front. To sidestep this, we have to do a bit more work. Rewrite 4 as root(16), and then know that roots can be multiplied together (16 x 3 = 48)

Therefore, => 12(root(3) / 2) - 2(root(3)) = 6root(3) - 2root(3) = 4root(3) 4root(3) = root(16) x root(3) = root(48) Therefore k = 48

MA
Answered by Marco A. Maths tutor

4663 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A right-angled triangle has side lengths of 4cm and 3cm. What is the length of its hypotenuse?


There is a quarter circle with radius 8cm, what is the area of the quarter circle. The answer should be given in terms of pi, units are cm^2.


Work out the value of 5^3-5^2:


Find the two solutions to the quadratic equation x^2-9x+18


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning