how do you do binomial expansion when the power is a negative

There is a simple equation, similar to the normal binomial expansion, thats easy to remember once youve used it a few times.

(1+x)n=1+nx+{[n(n-1)]/2!}x2+{[n(n-1)(n-2)]/3!}x3+...

This looks complicated but once you plug in values for n its actually pretty straight forward. 

Lets say we have the equation (1+x)-5 where -1d x=x. If we are asked to find the first 4 terms of this expansion we plug in the numbers up to the x3 term.

(1+x)-5=1-5x+{[(-5)(-6)]/2}x2+{[(-5)(-6)(-7)]/6]}x3+...

           =1-5x+15x2-35x3+...

There are trickier examples when x has a co-efficent larger than 1 or when the the number term in the bracket is not 1 alone, but we can look at those examples later. 

Answered by Sarah M. Maths tutor

8191 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f (x) = (x^2 + 4)(x^2 + 8x + 25). Find the roots of f (x) = 0


Integrate y=(x^2)cos(x) with respect to x.


Given a function f(x)=3x^2+5x-1, find its derivative.


Find the value of (cos(x) + sec(x))^2 with respect to x when evauated between pi/4 and 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences