how do you do binomial expansion when the power is a negative

There is a simple equation, similar to the normal binomial expansion, thats easy to remember once youve used it a few times.

(1+x)n=1+nx+{[n(n-1)]/2!}x2+{[n(n-1)(n-2)]/3!}x3+...

This looks complicated but once you plug in values for n its actually pretty straight forward. 

Lets say we have the equation (1+x)-5 where -1d x=x. If we are asked to find the first 4 terms of this expansion we plug in the numbers up to the x3 term.

(1+x)-5=1-5x+{[(-5)(-6)]/2}x2+{[(-5)(-6)(-7)]/6]}x3+...

           =1-5x+15x2-35x3+...

There are trickier examples when x has a co-efficent larger than 1 or when the the number term in the bracket is not 1 alone, but we can look at those examples later. 

SM
Answered by Sarah M. Maths tutor

10241 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.


Can I have help with integrating by parts? I am unsure on how to use the formula.


Why does integration by parts work?


make into a cartesian equation= x=ln(t+3) y= 1/t+5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning