Find ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx

When integrating, you need to add one to the power and divide the term by the power. We will consider each term individually, 2x4 will become (2x4+1)/(4+1) = (2x5)/5, -4x-0.5 will become (-4x-0.5+1)/(-0.5+1) = (-4x0.5)/(0.5) = -8x0.5 and 3 = 3x0 will become (3x0+1)/(0+1) = 3x. Therefore, ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx = (2x5)/5 -8x0.5 + 3x + C, where C is a constant of integration. Since integration and differentiation are the inverse of each other, the C appears because there could have been a number which became zero when the formula was differentiated. Therefore, we must include a constant C when integrating. You can check your answer because differentiating the answer will give you the formula within the integral.

Answered by Rebecca M. Maths tutor

6325 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.


Can you help me understand how Arithmetic sequences work?


Expand using binomial expansion (1+6x)^3


Solve x^3+2x^2+x=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences