Answers>Maths>IB>Article

How does Euclid's algorithm give solutions to equations?

Euclid's algorithm is really useful to be able to, firstly, see if two numbers are co-prime, in other words to see if they share any common factors, but also to find solutions to equations. Say we have two integers that satisfy: 32x + 24y = 16 Then we use Euclid's algorithm to first calculate the greatest common divisor (gcd) of 32 and 24. Hopefully, the method of this is ok? So we get gcd(32,24) = 8. Now, we can reverse what we did to get our solutions to the equation above. But don't forget that we had the equation equal to 16, not 8. This is often used in exams to trip up students, so look out for that.

Answered by Abby R. Maths tutor

1508 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Prove that (sinx)^2 + (cosx)^2 = 1


What is integration by parts, and how is it useful?


Find cos4x in terms of cosx.


Find the coordinates that correspond to the maximum point of the following equation: y = −16x^2 + 160x - 256


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences