For a curve of gradient dy/dx = (2/(x^2))-x/4, determine a) d^2y/dx^2 b) the stationary point where y=5/2 c) whether this is a maximum or minmum point and d) the equation of the curve

a) Differentiating gives d2y/dx2=-4x-3-1/4

b) Let dy/dx=0 and rearrange to find x=2

c) Inserting x=2 into d2y/dx2=-4x-3-1/4 will show that d2y/dx2 is smaller than zero so this is a maximum stationary point.

d) To find the original equation of the curve, dy/dx must be intetgrated which gives y=-2x-1-x2/8+c

Substituting in x=2 when y=5/2 gives 2.5=-1-0.5+c

Rearrange to give c=4

So the final equation is y=-2x-1-x2/8+4

Answered by Katie M. Maths tutor

5222 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Relative to a fixed origin O, the point A has position vector (8i+13j-2k), the point B has position vector (10i+14j-4k). A line l passes through points A and B. Find the vector equation of this line.


Why do you not add the 'plus c' when finding the area under a graph using integration even though you add it when normally integrating?


By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.


integrate with respect to x the function f(x)= xln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences