Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.

a) Firstly, differentiate x and y with respect to t. 

Giving you dx/dt = 1/t       and dy/dt = 12t2

dy/dx is found using the chain rule:

dy/dx = dy/dt x dt/dx = 12t3

b) You will need to differentiate dy/dx again with respect to t, to do this:

d2y/dx2=36t2 x dt/dx = 36t3

36t3=0.48

t=(0.48/36)1/3

t=0.24

Answered by Sara W. Maths tutor

2809 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If 2 log(x + a) = log(16a^6), where a is a positive constant, find x in terms of a


Integrate | x^7 (ln x)^2 dx ( | used in place of sigma throughout question)


How can I try and solve this differentiation, I don`t understand it?


You have a five-litres jug, a three-litres jug, and unlimited supply of water. How would you come up with exactly four litres of water (with no measuring cup)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences