Find the stationary pointsof the following: (y = x^3 - x^2 -16 x -17) and determine if each point is a maximum or minimum.

Notes; *Stationary (Turning) points are the points on the graph which are lowest or highest. (maximum or minima). *The gradient at a stationary point is zero. Steps:  1. Differentiate the function once to find the gradient function of the graph. (Find y') 2. Set the gradient function = to 0.  Solve this function to determine the x values of the stationary point(s). (Solve y' = 0) 3. Insert x values into original function to calculate the corrosponding y values.  4. Diffentiate gradient function to determine gradient of gradient and insert x values of max/min to determine if it is a maxima or minima. (Find y'' and insert xMin and xMax.) 5. If y > 0 it is a minimum and if y < 0 it is a maximum point.

CM
Answered by Charlie M. Maths tutor

3903 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find partial fractions of : (x+7) / ((x-3)(x+1)^2)


Simplify ln(e^2) - 4ln(1/e)


The Curve C shows parametric equations x = 4tant and y = 5((3)^1/2)(sin2t) , Point P is located at (4(3)^1/2, 15/2) Find dy/dx at P.


How many books and modules and what are they all about?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning