By completing the square, find any turning points and intersects with the x and y axes of the following curve. f(x) = 2x^2 - 12x +7

f(x) = 2x2 - 12x +7

  • First take out a factor of 2 so that we have the coefficient of x2 as 1.        f(x) = 2[x2 - 6x +7/2]

  • Next, complete the sqaure on the part in square brackets.                        f(x) = 2[(x - 3)2 - 9 + 7/2]

                                                                                                                      f(x) = 2[(x - 3)2 - 11/2]

                                                                                                                      f(x) = 2(x - 3)2 -11

  • We know from the fact that the original equation had a positive coefficient of x2 that the turning point will be a minimum. Therefore, in order to find the turning point we must minimise the equation we have arrived at. It can be seen that the lowest value of f(x) possible will occur when x = 3, giving the turning point as: 

                                                                                                                      (3, -11)

  • In order to find the intersection points with the x axis, we must set y = 0.

                                                                                                                     f(x) = 2(x - 3)2 - 11 = 0

                                                                                                                               2(x - 3)2 = 11

                                                                                                                                  (x - 3)2 = 11/2

                                                                                                                                   (x - 3) = +/- sqrt(11/2)

                                                                                                                                    x = 3 +sqrt(11/2) or x = 3 - sqrt(11/2)

-This gives the intersection points as:

                                                             (3 + sqrt(11/2), 0) and

                                                              (3 - sqrt(11/2), 0)

  • In order to find the intersection point with the y axis, we must set x = 0.

                                                                                                                   f(x) = 2(0 - 3)2 - 11 

                                                                                                                   f(x) = 2(9) -11

                                                                                                                   f(x) = 7

  • This gives the intersection point as:

                                                              (0, 7)

                                                          

Answered by Freddie I. Maths tutor

20788 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

3/5 of a number is 162. Work out the number.


200 pupils are taking a school trip. Some are flying, some are taking the bus. There are three times as many boys going as girls. One third of the boys going are flying. How many boys are getting the bus?


Write 2x^2 - 16x + 6 in the form a(x + b)^2 + c where a, b and c are constants to be determined.


There are two points 'A' and 'B' on a graph, their coordinates are (0,1) and (10,6) respectively. 1)Find the equation of the line that runs through both of these points.2)Find the equation of a line perpendicular to this through point 'B'.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences