Find the derivative (dy/dx) of the curve equation x^2 -y^2 +y = 1.

Most of the differentiation problems require us to apply one of the well known rules, be it product rule, quotient rule or chain rule. But those problems have one thing in common:  explicite formula for y, be it y = ln(x) or y = sin(x)/(x2 + 1).

In our example it's too difficult to isolate y, hence we will have to use implicit differentiation e.g. we will have to differentiate each term of the equation with respect to x.  Differentiating  (d/dx) yields,

d/dx [x2]  -   d/dx [y2] + d/dx [y] = d/dx [1]  =>

2x - 2y (dy/dx) + (dy/dx) = 0 =>

(dy/dx) (2y -1) =  2x   =>     (dy/dx) = 2x/(2y-1)

In our solution, we used the fact that the derivative of ywith respect to x is equal to 2y(dy/dx).

Answered by Adam G. Maths tutor

4180 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

b) The tangent to C at P meets the coordinate axes at the points Q and R. Show that the area of the triangle OQR, where O is the origin, is 9/(3-e)


Express 6cos(2x) + sin(x) in terms of sin(x), hence solve the equation 6cos(2x) + sin(x) = 0 for 0<x<360


Differentiate (x^2)cos(3x) with respect to x


What does it mean when I get a negative value when I do a definite integral?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences