What would happen to n and Emax when  a) the intensity is reduced to 1/2 I but the wavelength λ is unchanged? b) the wavelength λ is reduced but the intensity is unchanged?

FULL QUESTION: Electromagnetic radiation of wavelength λ and intensity I, incident on a metal surface, causes n electrons to be emitted per unit time. The maximum kinetic energy of the electrons is Emax. What would happen to n and Emax when 
a) the intensity is reduced to 1/2 I but the wavelength λ is unchanged?
b) the wavelength λ is reduced but the intensity is unchanged?

ANSWER: Intensity is directly proportional to the rate of photoelectric current (photons per unit time) which is directly proportional to the rate of electron emission from the metal surface. So I is proportional to n. A decrease in I by 1/2 would therefore mean a decrease in n by 1/2. Therefore n decreases. However the Emax of the electrons remains the same as the wavelength is unchanged.

A reduced wavelength would mean that the photons emitted have higher energy (E = hc/ λ and h and c are constant therefore a smaller  λ would mean a larger energy) therefore Emax will increase. However the intensity is constant. Intensity is energy per unit time per unit area therefore for it to remain constant either area or time must change with the increased energy from reduced wavelength. The area on which the EM radiation is incident remains the same (same metal surface) therefore the time must change. This means fewer photons will be emitted per unit time so fewer electrons will be emitted per unit time causing a decrease in n.

KE
Answered by Kim E. Physics tutor

7429 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the most effective use of the equation sheet?


What is the Photoelectric effect?


An ice cube with a small iron ball in its centre is placed in a cup of water. 3.9 x 10-3kg of water in the cup is displaced and the volume of the ice cube is 4.0 x 10-6m3. Ice density: 1000 kg m-3 Iron density: 7800 kg m-3, what is the volume of the iron?


A cup of tea contains 175 g of water at a temperature of 85.0 °C. Milk at a temperature of 4.5 °C is added to the tea and the temperature of the mixture becomes 74.0 °C. What is the internal energy lost by the water? What is the mass of the milk?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning