Find the tangent to y = x^2 - 4x + 9 at the point (3,15)

First find dy/dx:

dy/dx = 4x - 4

And thus at (3,15):

dy/dx = 12 - 4 = 8 = m (as m is the gradient of a curve)

So using y - y1 = m(x - x1) where (x1,y1) = (3,15):

y - 15 = 8(x - 3)

y = 8x- 9

SH
Answered by Scott H. Maths tutor

3227 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) = x sin(x)


A curve has parametric equations x= 2sin(t) , y= cos(2t) + 2sin(t) for -1/2 π≤t≤ 1/2π , show that dy/dx = - 2sin(t)+ 1


Draw the curve for x^2-5x+6


How do you solve an equation by completing the square?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning