Find the tangent to y = x^2 - 4x + 9 at the point (3,15)

First find dy/dx:

dy/dx = 4x - 4

And thus at (3,15):

dy/dx = 12 - 4 = 8 = m (as m is the gradient of a curve)

So using y - y1 = m(x - x1) where (x1,y1) = (3,15):

y - 15 = 8(x - 3)

y = 8x- 9

Answered by Scott H. Maths tutor

2532 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.


The equation kx^2+4kx+5=0, where a is a constant, has no real roots. Find the range of possible values of k.


Given the function y = x^5 + x^3/2 + x + 7 Express the following in their simplest forms: i) dy/dx ii) ∫ y dx


Prove by contradiction that sqrt(3) is irrational. (5 marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences