Integrate tan (x) with respect to x.

I = ∫ Tan (x) dx= ∫ (sin(x)) / (cos(x)) dx

We see that this is close to the standard integral  F'(x) / F(x) dx Ln (F(x)) + C

So first we must rewrite the Integral as: I = - ∫ (-sin(x)) / (cos(x)) dx (Taking minus one outside of the integral)

Now this is in the standard form and can be integrated;

I = - ∫ (-sin(x)) / (cos(x)) dx = - ln (cos (x)) + C

MH
Answered by Matthew H. Maths tutor

12481 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 7^(x+1) = 3^(x+2)


Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)


Differentiate 3x^2 + 6x^5 + 2/x


Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning