Integrate tan (x) with respect to x.

I = ∫ Tan (x) dx= ∫ (sin(x)) / (cos(x)) dx

We see that this is close to the standard integral  F'(x) / F(x) dx Ln (F(x)) + C

So first we must rewrite the Integral as: I = - ∫ (-sin(x)) / (cos(x)) dx (Taking minus one outside of the integral)

Now this is in the standard form and can be integrated;

I = - ∫ (-sin(x)) / (cos(x)) dx = - ln (cos (x)) + C

Answered by Matthew H. Maths tutor

11334 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the best way to revise for a Maths A-level?


How can I differentiate x^2+2y=y^2+4 with respect to x?


Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))


Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences