A curve has parametric equations: x = 3t +8, y = t^3 - 5t^2 + 7t. Find the co-ordinates of the stationary points.

First differentiate: dx/dt = 3,   dy/dt = 3t2 - 10t + 7

Using the chain rule: dy/dx = dy/dt * dt/dx = (3t2 - 10t + 7)/3 

At stationary points, the gradient is equal to zero: 3t2 - 10t + 7 = 0

Solve for t using the quadratic formula and substituting these values: a = 3, b = -10, c = 7

Solutions: t = 7/3 and 1

For the co-ordinates, substitute the values of t into the parametric equations: (15, 49/27) and (11, 3)

Answered by Robbie B. Maths tutor

5069 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.


f(x) = (x-5)/(x^2+5x+4), express this in partial fractions and hence find the integral of f(x) dx between x=0 and x=2, giving the answer as a single simplified logarithm.


Find dy/dx if y=(x^3)(e^2x)


How do I differentiate 4x^3 + 2x + x^4 with respect to x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences