A curve has parametric equations: x = 3t +8, y = t^3 - 5t^2 + 7t. Find the co-ordinates of the stationary points.

First differentiate: dx/dt = 3,   dy/dt = 3t2 - 10t + 7

Using the chain rule: dy/dx = dy/dt * dt/dx = (3t2 - 10t + 7)/3 

At stationary points, the gradient is equal to zero: 3t2 - 10t + 7 = 0

Solve for t using the quadratic formula and substituting these values: a = 3, b = -10, c = 7

Solutions: t = 7/3 and 1

For the co-ordinates, substitute the values of t into the parametric equations: (15, 49/27) and (11, 3)

RB
Answered by Robbie B. Maths tutor

5782 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for x, between 0 and 360 degrees, 4cos2 (x) + 7sin (x) – 2 = 0


A curve has the equation y = 4x^3 . Differentiate with respect to y.


Find dy/dx at t=3, where x=t^3-5t^2+5t and y=2t^2


A curve has equation y = f(x) and passes through the point (4,22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7 use intergration to find f(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning