Integral of (2(x^3)-7)/((x^4)-14x)

Set f(x)= (x^4)-14x. f’(x)=4(x^3)-14=2(2(x^3)-7). Thus we can write (2(x^3)-7)/((x^4)-14x)=(1/2)f’(x)/f(x). The integral of f’(x)/f(x)=ln|f(x)|+c. Thus the integral of (2(x^3)-7)/((x^4)-14x) is (1/2)(ln|f(x)|+c)=(1/2)ln|(x^4)-14x|+C.

Answered by Issy K. Maths tutor

2848 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the necessary conditions for a random variable to have a binomial distribution?


What are differences between speed and velocity, velocity and speed and acceleration?


Given that y = (3x^4 + x)^5, find dy/dx using the chain rule.


Solve 8(4^x ) – 9(2^x ) + 1 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences