Integral of (2(x^3)-7)/((x^4)-14x)

Set f(x)= (x^4)-14x. f’(x)=4(x^3)-14=2(2(x^3)-7). Thus we can write (2(x^3)-7)/((x^4)-14x)=(1/2)f’(x)/f(x). The integral of f’(x)/f(x)=ln|f(x)|+c. Thus the integral of (2(x^3)-7)/((x^4)-14x) is (1/2)(ln|f(x)|+c)=(1/2)ln|(x^4)-14x|+C.

Answered by Issy K. Maths tutor

2756 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx if y=(x^3)(e^2x)


A curve has the equation y=x^3+2x+15. Find dy/dx.


Express 2x^2 +8x +7 in the form A(x+B)^2 + C, where A, B and C are constants


Solve the following equation: 5x - 1 = 3x + 7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences