Integral of (2(x^3)-7)/((x^4)-14x)

Set f(x)= (x^4)-14x. f’(x)=4(x^3)-14=2(2(x^3)-7). Thus we can write (2(x^3)-7)/((x^4)-14x)=(1/2)f’(x)/f(x). The integral of f’(x)/f(x)=ln|f(x)|+c. Thus the integral of (2(x^3)-7)/((x^4)-14x) is (1/2)(ln|f(x)|+c)=(1/2)ln|(x^4)-14x|+C.

Answered by Issy K. Maths tutor

2847 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the function f(x) = x^3+6x^2+2 and determine if they are local maximums or minimums.


Where does the geometric series formula come from?


Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.


How would I go about finding the coordinates minimum point on the curve eg y = e^(x) - 9x -5?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences