Find the equation of the tangent to the unit circle when x=sqrt(3)/2 (in the first quadrant)

Unit circle: x2 + y2 = 1 when x = sqrt(3)/2:  y2 = 1 - (sqrt(3)/2)2  y2 = 1 - 3/4  y2 = 1/4  y = 1/2 or -1/2 (first quadrant, so y is positive, i.e. y = 1/2) find gradient at (sqrt(3)/2, 1/2):  x2 + y2 = 1  2x + 2y dy/dx = 0  dy/dx = -2x/2y  dy/dx = -x/y Substitute x= sqrt(3)/2, y = 1/2  dy/dx = -sqrt(3) Find equation of line:  y - y1 = m(x - x1)  y - 1/2 = -sqrt(3)(x-sqrt(3)/2)  y = -sqrt(3)x + 3/2 + 1/2  y = -sqrt(3)x + 2

KJ
Answered by Kiran J. Maths tutor

3656 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how to turn a fraction in the form of (x + a)/(x + b)^2 into partial fractions?


What is differentation and how does it work?


How do you solve a quadratic inequality eg find the values of x for which x^2 -6x +2 < -3


Edexcel C3 June 2015 Q1: tan(x)=p, where p is a constant. Using standard trigonometric identities, find the following in terms of p. a) tan(2x). b) cos(x). c) cot(x-45).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences