Find the equation of the tangent to the unit circle when x=sqrt(3)/2 (in the first quadrant)

Unit circle: x2 + y2 = 1 when x = sqrt(3)/2:  y2 = 1 - (sqrt(3)/2)2  y2 = 1 - 3/4  y2 = 1/4  y = 1/2 or -1/2 (first quadrant, so y is positive, i.e. y = 1/2) find gradient at (sqrt(3)/2, 1/2):  x2 + y2 = 1  2x + 2y dy/dx = 0  dy/dx = -2x/2y  dy/dx = -x/y Substitute x= sqrt(3)/2, y = 1/2  dy/dx = -sqrt(3) Find equation of line:  y - y1 = m(x - x1)  y - 1/2 = -sqrt(3)(x-sqrt(3)/2)  y = -sqrt(3)x + 3/2 + 1/2  y = -sqrt(3)x + 2

Answered by Kiran J. Maths tutor

3335 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is it that sin^2(x) + cos^2(x) = 1?


Given y = 4x/(x^2 +5) find dy/dx, writing your answer as a single fraction in its simplest form


A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.


Find the tangent and normal to the curve y=(4-x)(x+2) at the point (2, 8)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences