Find the equation of the tangent to the unit circle when x=sqrt(3)/2 (in the first quadrant)

Unit circle: x2 + y2 = 1 when x = sqrt(3)/2:  y2 = 1 - (sqrt(3)/2)2  y2 = 1 - 3/4  y2 = 1/4  y = 1/2 or -1/2 (first quadrant, so y is positive, i.e. y = 1/2) find gradient at (sqrt(3)/2, 1/2):  x2 + y2 = 1  2x + 2y dy/dx = 0  dy/dx = -2x/2y  dy/dx = -x/y Substitute x= sqrt(3)/2, y = 1/2  dy/dx = -sqrt(3) Find equation of line:  y - y1 = m(x - x1)  y - 1/2 = -sqrt(3)(x-sqrt(3)/2)  y = -sqrt(3)x + 3/2 + 1/2  y = -sqrt(3)x + 2

KJ
Answered by Kiran J. Maths tutor

3972 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Describe the 3 types of solution to a quadratic equation


Express asin(x) + bcos(x) in the form Rsin(x+c), where c is a non-zero constant.


Find the derivative of sinx, use that to find the derivative of xsinx


The curve C has equation 4x^2 – y^3 – 4xy + 2^y = 0 The point P with coordinates (–2, 4) lies on C . Find the exact value of dy/dx at the point P .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning