If z=4+i, what is 1/z? (in the form a+bi)

1/z =1/(4+i) Multiply both top and bottom by the complex conjugate, z* = 4 - i, 1/z = (4-i)/((4+i)(4-i)) = (4-i)/(16+4i-4i-i2) = (4-i)/17 ans: 4/17 - i/17

Related Further Mathematics GCSE answers

All answers ▸

Expand (2x+3)^4


y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.


Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5


Work out the coordinates for the stationary point of y = x^2 + 3x + 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences