Find the tangent and normal to the curve y=(4-x)(x+2) at the point (2, 8)

-Tangent is a straight line that touches, but does not intersect, the curve at the point (2,8).

We need to find the gradient of the curve at the point (2, 8). To do this, expand the equation, differentiate it and then sub in the point (2, 8) to find the gradient.

y=-x^2 + 2x + 8                         

dy/dx= -2x + 2                           

At (2,8) dy/dx = -2. Therefore the gradient of your tangent is -2.

To find the tangent equation, use the formula y= mx+c with m=-2, x=2, y=8. Subbing in these values gives c=12 and therefore the tangent equation is y=-2x + 12.

Normal to the curve is a line that cuts the curve at 90 degrees. This is also known as perpendicular.

The gradient of a perpendicular line is -1/m.

Therefore the gradient is -1/(-2)=1/2 We now use y=mx+c with m=1/2, x=2, y=8 to find the normal equation. This gives c=7 and therefore the normal equation is y=x/2 + 7. 

Answered by Sam E. Maths tutor

4240 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2


Imagine a sector of a circle called AOB. With center O and radius rcm. The angle AOB is R in radians. The area of the sector is 11cm². Given the perimeter of the sector is 4 time the length of the arc AB. Find r.


Outline the various ways that you can differentiate a function


Finding the tangent of an equation using implicit differentiation


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences