By Differentiating from first principles, find the gradient of the curve f(x) = x^2 at the point where x = 2

This qustion can be solved easily using the gradient formular, m = ∆y/∆x, and some simple algrebra.

The gradient at the point x = 2 is calculated by find the gradient of a tangent at x = 2. To find this we imagine we are drawing a line from the point at x = 2, to a point on the line very close to it, a distance of dx along, and [f(dx) - f(x)] up.

Using the gradient m = ∆y/∆x, and subbing in values for change in x and change in y we get:

dy/dx = [f(x + dx) - f(x)]/dx

This however is the gradient along the line; the gradient at the point x = 2 is found by finding the limit as dx tends to zero, or as the line becomes infintesimently small.

This gives:

dy/dx = lim x -> 0 [(x + dx)^2 - x^2)/dx

= lim x -> 0 [x^2 + 2xdx + dx^2/dx

= lim x -> 0 [2x + dx]

= 2x

it is importnt to now finish the question and fin the gradient at x = 2

dy/dx = 2 x 2 = 4

HF
Answered by Hugo F. Further Mathematics tutor

3182 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the vector equation of the line of intersection of the planes 2x+y-z=4 and 3x+5y+2z=13.


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


How do I sketch the locus of |z - 5-3i | = 3 on an Argand Diagram?


What is the complex conjugate?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning