By Differentiating from first principles, find the gradient of the curve f(x) = x^2 at the point where x = 2

This qustion can be solved easily using the gradient formular, m = ∆y/∆x, and some simple algrebra.

The gradient at the point x = 2 is calculated by find the gradient of a tangent at x = 2. To find this we imagine we are drawing a line from the point at x = 2, to a point on the line very close to it, a distance of dx along, and [f(dx) - f(x)] up.

Using the gradient m = ∆y/∆x, and subbing in values for change in x and change in y we get:

dy/dx = [f(x + dx) - f(x)]/dx

This however is the gradient along the line; the gradient at the point x = 2 is found by finding the limit as dx tends to zero, or as the line becomes infintesimently small.

This gives:

dy/dx = lim x -> 0 [(x + dx)^2 - x^2)/dx

= lim x -> 0 [x^2 + 2xdx + dx^2/dx

= lim x -> 0 [2x + dx]

= 2x

it is importnt to now finish the question and fin the gradient at x = 2

dy/dx = 2 x 2 = 4

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that 6^n + 4 is divisible by 5 for all integers n >= 1


Integrate ln(x) with respect to x.


Write down the equations of the three asymptotes and the coordinates of the points where the curve y = (3x+2)(x-3)/(x-2)(x+1) crosses the axes.


The curve C has parametric equations x=cos(t)+1/2*sin(2t) and y =-(1+sin(t)) for 0<=t<=2π. Find a Cartesian equation for C. Find the volume of the solid of revolution of C about the y-axis.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences