How to calculate the integral of sec(x)?

First of all, multiply secx by (secx+tanx)/(secx+tanx). Use the substitution u=secx+tanx, so that du=(secxtanx+sec2x) dx and then substitute both terms. Calculate the integral of the du/u arriving at ln|u|+C. Then put in the substituted function of x. The result is ln|secx+tanx|+C.

CK
Answered by Cezary K. Further Mathematics tutor

9067 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What are the conditions required for the poisson distribution?


Integrate cos(log(x)) dx


It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.


Express (X²-16)/(X-1)(X+3) in partial fractions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning