Two pellets are fired simultaneously from the horizontal, one is fired vertically at 100m/s and the other is fired at 200m/s at an angle theta from the horizontal. Calculate the angle of the second pellet if they both land at the same time.

For this problem, we can look at the two pellets individually. If we find the time taken for the first bullet to reach the ground again, then we know that it must take the same time for the second bullet to land. Once we know this, we can work out the angle at which the second bullet was fired. We also only need consider SUVAT equations for the vertical direction, as we are not worried with how far away the bullets are when they land. 

We know the first pellet lands where it was fired from (S=0, U=100 and A=-10) so we can substitute values in to S=UT+0.5AT2, re-arrange and solve to give a time of 10s. The second bullet has a vertical component and a horizontal component to its initial velocity; the vertical component being 200sin(theta). We can then substitute this time and velocity into a second SUVAT for the other pellet (S=0, T=10, A=-10 and U=200sin(theta)). Re-arranging S=UT+0.5ATand solving shows that sin(theta) = 0.5 so we can inverse this on the calculator to give Theta = 30 degrees.

CI
Answered by Christopher I. Physics tutor

3175 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.


Explain quantitatively how an object can follow circular motion whilst on a ramp with no friction in the radial direction.


What determines the acoustic impedance of a material and why is it useful in understanding ultrasound imaging?


Why does current split between branches of a parallel circuit, but voltage remains the same for each branch?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences