sin(x)/(cos(x)+1) + cos(x)/(sin(x)+1) = 1

sin^2(x) + sin(x) + cos^2(x) + cos(x) = cos(x)sin(x) + cos(x) + sin(x) +1

(sin^2(x) + cos^2(x) =1) Therefore;

1 +sin(x) + cos(x) = cos(x)sin(x) + sin(x) +cos(x) +1

Cancelling out on both sides

cos(x)sin(x) = 0

Solution: cos(x)=0 x=pi/2 + kpi sin(x)=0 x= 0+ kpi 

JO
Answered by James O. Maths tutor

3911 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate by parts?


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0 (a) Find (i) dy/d x (ii) d^2y/dx^2 (b) Verify that C has a stationary point when x = 4 (c) Determine the nature of this stationary point, giving a reason for your answer.


Integrating (e^x)sin(x)


When dealing with trigonometric functions such as sin, cos or tan, how do you solve the trigonometric equation when the argument of the function(s) is nx, where n is a real number not equal to 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning