sin(x)/(cos(x)+1) + cos(x)/(sin(x)+1) = 1

sin^2(x) + sin(x) + cos^2(x) + cos(x) = cos(x)sin(x) + cos(x) + sin(x) +1

(sin^2(x) + cos^2(x) =1) Therefore;

1 +sin(x) + cos(x) = cos(x)sin(x) + sin(x) +cos(x) +1

Cancelling out on both sides

cos(x)sin(x) = 0

Solution: cos(x)=0 x=pi/2 + kpi sin(x)=0 x= 0+ kpi 

Answered by James O. Maths tutor

3589 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation : dy/dx - x^3 -5x = 0


A curve has equation y=2x^3. Find dy/dx.


Express 1/(x(1-3x)) in partial fractions.


Differentiate with respect to x: (4x^2+3x+9)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences