The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.

The main piece of information this question gives us is that the two lines do not cross or touch. From this we can immediately see that we will need to use the discriminant of the quadratic formula b2 - 4ac. To start with treat the curves as simultaneous equations and bring all terms to one side, 2px2-6px-3x+4p+7=0. Now group the terms together to form a quadratic equation you will recognise. E.g. x2(2p)+x(-6p-3)+(4p+7)=0. As the lines don't cross we know there will be no real roots to this equation so b2-4ac < 0.

By plugging the constants into this equation we get (-6p-3)2-4(2p)(4p+7)< 0 and this simplifies to 4p^2  – 20p + 9 < 0 as required.

Answered by Molly W. Maths tutor

23707 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate dy/dx = 2x/(x^2-4)


Evaluate the integral ∫2x√(x^2 +1) dx


(a) Find the differential of the the function, y = ln(sin(x)) in its simplest form and (b) find the stationary point of the curve in the range 0 < x < 4.


The straight line with equation y=3x-7 does not cross or touch the curve with equation y=2px^2-6px+4p, where p is a constant.(a) Show that 4p^2-20p+9<0 (b) Hence find the set of possible values for p.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences