How do you differentiate x^x?

To differentiate xx, we first let y = xx. (Note that xx is not in the form xc where c is a constant or ax where a is a constant so the usual differentiation formulas cannot be used). The trick here is to take the natutral logarithm of both sides. Then you obtain, ln(y) = ln(xx). From here you need to use the rule that ln(xx) = xln(x). So currently we have ln(y) = xln(x). From here we can differentiate implicitly to get: 1/y multiplied by dy/dx = ln(x) + 1 (differentiate right hand side using product rule and left hand side using chain rule).The final step is to multiply through by y and substitute xx back in for y. This gives you: dy/dx = xx(ln(x) + 1).  

Answered by Anish P. Maths tutor

2898 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the line Y = X^3 + X + 6 when X = 4


what does it mean if "b^2 - 4ac < 0" for a quadratic equation (eg y = a*x^2 + b*x + c)


How do I differentiate y=(4+9x)^5 with respect to x?


Find the cross product of vectors a and b ( a x b ) where a = 3i + 6j + 4k and b = 6i - 2j + 0k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences