The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  

My exact explanation would depend on the students level of understanding. The following answer assumes a basic understanding of differentiation and equations of lines; a) Gradient of tangent is equal to gradient of 3y - 2x = 1 which can be found by rearranging the equation. (2/3)  b) We can find out where along the curve y=x1/2 we get a gradient of 2/3 (since the curve is not linear)  c) This gives us the X coordinate which we can sub into the intial curve to get the y coordinate of point A.  d) We now have the coordinates of a point on the curve and the gradient of a curve. We can therfore use the general equation of a line to work out the equation of the line. (y - y1 = M ( x - x1) ). 

Answered by Sefret C. Maths tutor

6841 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If we have a vector 4x + 6y + z and another vector 3x +11y + 2z then what is the angle between the two?Give the answer in radians


Find the integral of (cosx)*(sinx)^2 with respect to x


Find the exact solution, in its simplest form, to the equation ln(4y + 7) = 3 + ln(2 – y) (Core Maths 3 Style Question)


A girl saves money over 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. Find the amount she saves in Week 200. Calculate total savings over the 200 week period.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences