How do you integrate ln(x) with respect to x?

Rewrite ln(x) as 1ln(x) then integrate by parts.  The formula for integration by parts is  uv' = uv -  vu', here use u = ln(x) and v' = 1.  By differentiating u we get u' = 1/x, and by integrating v' we get v = x.  Putting these numbers into this formula gives  1ln(x) = xln(x) -  x/x dx = xln(x) -  1 dx.  The integral of 1 is x, so the final answer is x*ln(x) - x + c, for a constant c.

Answered by Anthony G. Maths tutor

2686 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: y=12x(2x+1)+1/x


Common mistakes made in A-Level exams


What is the second derivative used for?


What is the integral of x^x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences