How do you integrate ln(x) with respect to x?

Rewrite ln(x) as 1ln(x) then integrate by parts.  The formula for integration by parts is  uv' = uv -  vu', here use u = ln(x) and v' = 1.  By differentiating u we get u' = 1/x, and by integrating v' we get v = x.  Putting these numbers into this formula gives  1ln(x) = xln(x) -  x/x dx = xln(x) -  1 dx.  The integral of 1 is x, so the final answer is x*ln(x) - x + c, for a constant c.

AG
Answered by Anthony G. Maths tutor

3393 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (cosx)^3


The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


Solve the simultaneous equations x – 2y = 1 and x^2 + y^2 = 29.


What is the turning point on the curve f(x) = 2x^2 - 2x + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning