How do you integrate ln(x) with respect to x?

Rewrite ln(x) as 1ln(x) then integrate by parts.  The formula for integration by parts is  uv' = uv -  vu', here use u = ln(x) and v' = 1.  By differentiating u we get u' = 1/x, and by integrating v' we get v = x.  Putting these numbers into this formula gives  1ln(x) = xln(x) -  x/x dx = xln(x) -  1 dx.  The integral of 1 is x, so the final answer is x*ln(x) - x + c, for a constant c.

Answered by Anthony G. Maths tutor

2781 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the inverse of f(x) = (3x - 6)/2


How do I find a stationary point on a curve and work out if it is a maximum or minimum point?


Describe the set of transformations that will transformthe curve y=x^ to the curve y=x^2 + 4x - 1


Expand the expression (1+3x)^1/3 up to the term x^3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences