How do you integrate ln(x) with respect to x?

Rewrite ln(x) as 1ln(x) then integrate by parts.  The formula for integration by parts is  uv' = uv -  vu', here use u = ln(x) and v' = 1.  By differentiating u we get u' = 1/x, and by integrating v' we get v = x.  Putting these numbers into this formula gives  1ln(x) = xln(x) -  x/x dx = xln(x) -  1 dx.  The integral of 1 is x, so the final answer is x*ln(x) - x + c, for a constant c.

Answered by Anthony G. Maths tutor

2457 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following inequality and shade the region to which it applies on a graph. 10x(squared) < 64x - 24


Solve x^2 + 8x +3 = 0 by completing the square.


When you integrate, why do you need to add a +C on the end?


The polynomial f(x) is define by f(x) = 3x^3 + 2x^2 - 8x + 4. Evaluate f(2).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences