Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square

First, we need to complete the square. We take the first part of the equation ignoring the constant ( + 7).  

y = x2 - 10x , we want to change the form of this equation from  x2 + ax + (a/2)2  into ( x + a/2 )2

y = ( x - 5 )2 - 25, what we did here was half the 10, and turn it into  ( x - 5 )2  and we then subtracted the square of half of 10.

We then need to remember the constant + 7, so we add this back to the equation. y = ( x - 5 )2 - 25 + 7 = ( x - 5 )2 - 18.

The coordinate of the turning point is then ( 5, -18).

Answered by James P. Maths tutor

9203 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I find the area under the graph of y = f(x) between x = a and x = b?


The functions f and g are defined by f : x → 2x + ln 2, g : x → e^(2x). Find the composite function gf, sketch its graph and find its range.


How can you find the coefficients of a monic quadratic when you know only one non-real root?


Given f(x) = (x^4 - 1) / (x^4 + 1), use the quotient rule to show that f'(x) = nx^3 / (x^4 + 1)^2 where n is an integer to be determined.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences