Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square

First, we need to complete the square. We take the first part of the equation ignoring the constant ( + 7).  

y = x2 - 10x , we want to change the form of this equation from  x2 + ax + (a/2)2  into ( x + a/2 )2

y = ( x - 5 )2 - 25, what we did here was half the 10, and turn it into  ( x - 5 )2  and we then subtracted the square of half of 10.

We then need to remember the constant + 7, so we add this back to the equation. y = ( x - 5 )2 - 25 + 7 = ( x - 5 )2 - 18.

The coordinate of the turning point is then ( 5, -18).

Answered by James P. Maths tutor

9208 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of y= 5x^2 + 2x + 7


f(x)=12x^2e^2x - 14, find the x-coordinates of the turning points.


Work out the equation of the tangent at x = 3, knowing that f(x) =x^2


Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences