Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square

First, we need to complete the square. We take the first part of the equation ignoring the constant ( + 7).  

y = x2 - 10x , we want to change the form of this equation from  x2 + ax + (a/2)2  into ( x + a/2 )2

y = ( x - 5 )2 - 25, what we did here was half the 10, and turn it into  ( x - 5 )2  and we then subtracted the square of half of 10.

We then need to remember the constant + 7, so we add this back to the equation. y = ( x - 5 )2 - 25 + 7 = ( x - 5 )2 - 18.

The coordinate of the turning point is then ( 5, -18).

JP
Answered by James P. Maths tutor

10196 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How should I aproach a connected rates of change question.


Why does d/dx (tan(x)) = sec^2(x)?


How do you differentiate parametric equations?


A projectile is thrown from the ground at 30 degrees from the horizontal direction with an initial speed of 20m/s. What is the horizontal distance travelled before it hits the ground? Take the acceleration due to gravity as 9.8m/s^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning