A tank is filled with water up to the height H0. At the bottom of the tank, there is a tap which is opened at t=0. How does the height of liquid change with time?(Hint: dH/dt is proportional to -H)

This is a typical C4 differential equation question. The same algorithm could be used for a lot of other problems.

First of all, from the hint we have that dH/dt = -kH (1).

We need to separate the variables and then integrate both sides : dH/H = -kdt (2).

Now integrate both sides and dont forget about the integration constant!

lnH = -kt + c (3). In order to get rid of c, we have to use the boundary conditions given in the question, that is at t=0 , H=H0, and plug them into (3)

lnH0 = c (4) . Now plug (4) into (3) => lnH = -kt + lnH0  => lnH - ln H0 = -kt , using the subtraction of logs formula gives us: ln(H/H0) = -kt. 

Taking e to the power of both sides : H/H0 = e-kt which gives our final answer : H = H0 e-kt

Note that this is an exponential decrease where the value of k depends on various factors such as the viscosity, density of the fluid used or the diameter of the tap.

Answered by Maxim B. Maths tutor

6557 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


How do I differentiate 4x^3 + 2x + x^4 with respect to x?


f(x) = sinx. Using differentiation from first principles find the exact value of f' (π/6).


An arithmetic progression has a tenth term (a10) = 11.1 and a fiftieth term (a50) = 7.1 Find the first term (a) and the common difference (d). Also find the sum of the first fifty terms (Sn50) of the progression.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences