Clare buys some shares for $50x. Later, she sells the shares for $(600 + 5x). She makes a profit of x% (a) Show that x^2 + 90x − 1200 = 0

Profit is (New price-Original price)/Original price . As a fraction it is percentage Profit/100. Equate (New price-Original price)/Old Profit to the fraction of Profit in %/100. Cross multiply and come up with a quadratic eqation. 0 (600+5x-50x)/50x=x/100 to give 100(600-45x)=50(x^2) Divide through by 50 2(600-45x)=(x^2) Move all on one side to end up with x^2 + 90x − 1200 = 0

RH
Answered by Raj H. Maths tutor

12434 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Let a = 4b + 5(c - b). Find the value of c when a = 8 and b = 7.


Factorise and solve x^2-8x+15=0


Factorise the following equation: x^2 + x - 6


£X was invested for 5 years, earning compound interest of 2% per year. After 5 years the total value of the investment was £11,040.81. How do I calculate the value of the invested amount £X?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning