Clare buys some shares for $50x. Later, she sells the shares for $(600 + 5x). She makes a profit of x% (a) Show that x^2 + 90x − 1200 = 0

Profit is (New price-Original price)/Original price . As a fraction it is percentage Profit/100. Equate (New price-Original price)/Old Profit to the fraction of Profit in %/100. Cross multiply and come up with a quadratic eqation. 0 (600+5x-50x)/50x=x/100 to give 100(600-45x)=50(x^2) Divide through by 50 2(600-45x)=(x^2) Move all on one side to end up with x^2 + 90x − 1200 = 0

RH
Answered by Raj H. Maths tutor

12389 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The diameter of a circle is 14cm, work out its area


I need help understanding simultaneous equations with more than two variables, can you please help?


How do you find the equation of a straight line on a graph?


In a sale, normal prices are reduced by 18%. The sale price of an umbrella is £25.83. Work out the normal price of the umbrella.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning