Solve the differential equation dx/dt=-6*x , given when t=0 x=7.

You start by seperating the variables giving,

(1/x)*dx=(-6)*dt

you then integrate both sides with respect to the variables,

ln(x)=-6*t+c

you then subsitute in the given conditions to find 'c',

ln(7)=0+c    therefore c=ln(7)

ln(x)=-6t+ln(7)

taking exponential of each element gives:

x=exp(-6t)+7

Answered by Lucy C. Maths tutor

7768 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y=(2x-3)^5. Find the equation of the normal of this curve at point P with y coordinate -32.


Rewrite ... logF=logG+logH−log(1/M)−2*logR ... in the form F=... using laws of logarithms


Given that 4 sin(x) + 5 cos(x) = 0 , find the value of tan x .


When and how do I use the product rule for differentiation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences