Solve the differential equation dx/dt=-6*x , given when t=0 x=7.

You start by seperating the variables giving,

(1/x)*dx=(-6)*dt

you then integrate both sides with respect to the variables,

ln(x)=-6*t+c

you then subsitute in the given conditions to find 'c',

ln(7)=0+c    therefore c=ln(7)

ln(x)=-6t+ln(7)

taking exponential of each element gives:

x=exp(-6t)+7

LC
Answered by Lucy C. Maths tutor

8465 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the minimum value of the function, f(x) = x*exp(x)


Find the integral between 4 and 1 of x^(3/2)-1 with respect to x


Differentiate y = √(1 + 3x²) with respect to x


Find the equation of the normal to the curve x^3 + 2(x^2)y = y^3 + 15 at the point (2, 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning