Find the integral of a^(x) where a is a constant

Starting with ∫ax dx ,
We can re-write ax using logs as eln(a)*x using some of their properties
We use the substitution u = ln(a)*x (as such du/dx = ln(a)) allowing us to easily integrate eu  with respect to u, by substituting du/ln(a) in the place of dx
The result is eu/ln(a) + c and after re-writing in terms of x by we get an answer of:
ax/ln(a) +c

Answered by Andreas P. Maths tutor

2857 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The sum of the first K natural numbers is 300. Find the value of K.


Find the coordinates of the sationary points on the curve x^2 -xy+y^2=12


Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


A curve has the equation y=3 + x^2 -2x^3. Find the two stationary points of this curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences