Vector Equation So we know it contains three points so we can find two lines in the plane. 1) (1,2,3) + A((0,1,2) - (1,2,3)) = (1,2,3) + A(-1,-1,-1) 2) (1,2,3) + B((2,3,0) - (1,2,3)) = (1,2,3) + B(1,1,-3) Generally the vector form of a plane will be in the form of a point on the plane and two different direction vectors, so we can deduce from above that one possible plane equation with these 3 points is (1,2,3) + A(-1,-1,-1) + B(1,1,-3) Cartesian Equation So first lets find the normal to the plane. We do this by doing the cross product of the two direction vectors in the vector equation (-1,-1,-1)X(1,1,-3) = (4,-4,0) If we take out a factor of four due to it being a direction vector we end up wih the normal being (1,-1,0) so the general form of the cartesian is (a,b,c).(x,y,z)=d or ax+by+cz=d where (a,b,c) is the normal to the plane and d is the product of a point on the plane replacing (x,y,z) So we can write x - y =d putting in the poiny (1,2,3) gives the full cartesian equation x - y = -1
5017 Views
See similar Further Mathematics A Level tutors