A tunnel has height, h, (in metres) given by h=14-x^2 where x is the horizontal distance from the centre of the tunnel. Find the cross sectional area of the tunnel. Also find the maximum height of a truck passing through the tunnel that is 4m wide.

Firstly, solve 0=14-x^2 to find the horisontal distance to the edges of the tunnel. x1=sqrt(14), x2= -sqrt(14).

Integrate h=14-x^2 between x1 and x2 28*sqrt(14) -(2(sqrt(14)^3))/3. This is the required area

Next, the center of the tunnel is the heighest point so we would place the center of the truck here. Threfore, the edges of the truck are at x=2 and x=-2. The height of the tunnel here is 14-(2^2) = 14-((-2)^2) = 14-4 = 10. Therefore 10 is the max height.

JG
Answered by James G. Maths tutor

8131 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve 4x/(x+1) - 3/(2x+1) = 1


Differentiate(dx) xy+4y-13


What is the product rule in differentiation?


A particle is placed on a rough plane which is inclined to the horizontal at an angle θ, where tanθ =4/3, and released from rest. The coefficient of friction between the particle and the plane is 1/3. Find the particle's acceleration.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning