Solve the differential equation: (dy/dx) = 6xy^2

Start by recognising that this is a separable differential equation; it can be written with all of the x's on one side of the equals sign, and all of the y's on the other. The first step is to rearrange so that:

(1/y^2)(dy/dx) = 6x

Now integrating both sides with respect to x gives:

integral (1/y^2 ) dy = integral (6x) dx

Carry out the integral:

-1/y = 3x^2 + k

And rearrange to give:

y = -1/(3x^2 + k)

Answered by Michael J. Maths tutor

8943 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the area between two lines?


How do you find the possible values of cos(x) from 5cos^2(x) - cos(x) = sin^2(x)?


A circle with centre C has equation x^2 + y^2 + 2x + 6y - 40 = 0 . Express this equation in the form (x - a)^2 + (x - b)^2 = r^2. Find the co-ordinates of C and the radius of the circle.


Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences