Complete this substitution question: x^​3 - 25 = 103 - x^​3

Firstly, let's move the x^​3's onto the same side (and preferably keep them positive). Let's add x^​3 to both sides, which means the RHS will now read '2x^​3 - 25' and the LHS will read '103'. Next we want to get the numbers onto the same side, so let's add 25 to both sides (again, to keep the numbers positive). This leaves us with 2x^​3=128. Next we need to divide both sides by 2 (to get rid of the 2 in from of the x^​3 term). This means x^​3=64. After cube routing both sides, we have arrived at our answer of 'x=4'.

AJ
Answered by Aoife J. Maths tutor

3160 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the equation of the line that passes through the (4,6) and (9,-4)


The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a.


2/(y+4) + 3(y-2)


Harry mixes white paint and blue paint in the ratio 2:5. He makes a total of 21 litres of paint. How much more blue paint does he need to add to the mixture so that the ratio of white paint to blue paint becomes 1:4?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning