(3 + root(a))(4 + root(a)) = 17 + k(root(a)) where a and k are positive integers. Find the value of a and the value of k.

Let's open out the bracket using the FOIL method (first, outside, inside, last):

(3 + root(a))(4 + root(a)) = 12 + 3root(a) + 4root(a) + (root(a))2 = 12 + 7root(a) + a.

Since the answer 17 + k(root(a)) is in the form of an integer + surd, we must equate the integers and surds of 12 + 7root(a) + a     with       17 + k(root(a)).

Therefore, 12 + a = 17       so     a = 5

7root(a) = k(root(a))           so     k = 7.

Answered by Abhinav J. Maths tutor

8593 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a village the number of houses and the number of flats are in the ratio 7 : 4 the number of flats and the number of bungalows are in the ratio 8 : 5 There are 50 bungalows in the village. How many houses are there in the village?


Surd Calculations?


Using Pythagoras Theorem find the length of the hypotenuse of a right triangle where a=7 cm and b=11 cm. Round to the nearest tenth


X=4a+3b, If a is a two digit cube number and b is a two digit square number then what is the lowest possible value for X?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences