Let y=arcsin(x)/sqrt(1-x^2). Show that (1-x^2) y'-xy-1=0, and prove that, for all integers n>=0, (1-x^2)y^{n+2}-(2n+3)xy^{n+1} -(n+1)^2 y^{n}=0. (Superscripts denote repeated differentiation)

This is the first part of a STEP question (STEP 3, 2013, Q1), and is an example of a recurring pattern - "Induction Differential Equation".

The first part is a computation, combining the chain and quotient rules. We know that the derivative of f(x)=arcsin(x) is 1/sqrt(1-x2), and we need to differentiate the denominator. We use the chain rule: let u=1-x^2, and v=sqrt(u). Then du/dx=-2x, and dv/du = 1/(2 sqrt(u)). Combining, dv/dx=-x/sqrt(1-x2). Now, we put everything together using the quotient rules: y' = (f'v-v'f)/v2. Multiplying by (1-x2)=v2, we obtain (1-x2)y'= sqrt(1-x2)/sqrt(1-x2) +xarcsin(x)/sqrt(1-x2), which we can rewrite as 1+xy, as desired. Let's call this equation ().

We prove the second part by induction on n. To do this, we need two things: a base case, that is, proving the case n=0, and an inductive step, where we prove case n+1 from case n. To do the base case, we differentiate both sides of equation (*) that we proved above: d/dx ((1-x2 )y') = d/dx (xy+1 ). On the left-hand side, we get -2xy'+(1-x2 )y'', using the product rule, and on the right-hand side, we get xy'+y, similarly. Rearranging, we've proven the case n=0 of the desired statement. The inductive step is similar: we differentiate the equation from case n using the chain rule. Each of the first two terms splits into two: respectively, -2xy(n+2)+(1-x2)y(n+3), and (2n+3)y(n+1)+(2n+3)xy(n+2). If we combine the terms with the same numbers of derivatives on y, we get (1-x2)y(n+3)-(2n+5)xy(n+2)-((n+1)2+2n+3)y(n+1)=0 -which is what we wanted to prove, since ((n+1)2+2n+3) simplifies to (n+2)2.

DH
Answered by Daniel H. STEP tutor

7162 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

What is the largest positive integer that always divides n^5-n^3 for n a natural number.


Show that if a polynomial with integer coefficients has a rational root, then the rational root must be an integer. Hence, show that x^n-5x+7=0 has no rational roots.


Suppose that 3=2/x(1)=x(1)+(2/x(2))=x(2)+(2/x(3))=x(3)+(2/x(4))+...Guess an expression, in terms of n, for x(n). Then, by induction or otherwise, prove the correctness of your guess.


How would you prove the 'integration by parts' rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning