Derive the kinetic theory equation pV=Nm/3(crms2) for an ideal gas.

Assume a point molecule in a container with dimensions lx by ly by lz travelling at velocity c1 given by c12=u12+v12+w12​​​​​​ where u, v, w are the x, y, and z velocity components.

>each impact of the molecule with the ly by lz container face reverses the x component of the velocity, so the change in momentum dp is given by dp=(-mu1)-mu1=-2mu1

>the time between successive impacts t is given by t=2lx/u1

>using Newton's second law, the force F1 on a molecule is given by F1=-2mu1/(2lx/u1)=-mu12/lx

>using Newton's third law, the force Fs on the face surface is given by Fs=mu12/lx

>the pressure p1 exerted by the molecule on the impact face is given by p1=Fs/area of impact face=mu12/lxlylz=mu12/V where V is the container volume

>the total pressure p exerted by N molecules on the impact face is given by p=mu12/V + mu22/V + mu32/V +...+ mun2/V=m/V(u12 + u22 + u32+...+ un2)=Nm/V(u2) where u is the mean u component speed

>the motion of molecules is random meaning there is no preferred direction so p=Nm/3V(u2+v2+w2)=Nm/3V(crms2) where crms is the root mean square speed given by crms2=1/N(c12+c22​​​​​​​+c32 +…+cn2)

Answered by Maryna V. Physics tutor

6803 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do we know the energy of a photon (light particle) is quantised?


A car is travelling at 10m/s when it brakes and decelerates at 2ms^-2 to a stop. How long does the car take to stop?


A box is pulled with a rope at 26° to the horizontal and a tension of 120N. What is the work done in pulling it 5 metres?


A phone is knocked off a table 800cm of the ground. If the phone is 650g a) what is the gravational potential of the phone? b)what speed will the phone hit the floor at? c)How long will it take for the phone to hit the floor?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences