Derive the kinetic theory equation pV=Nm/3(crms2) for an ideal gas.

Assume a point molecule in a container with dimensions lx by ly by lz travelling at velocity c1 given by c12=u12+v12+w12​​​​​​ where u, v, w are the x, y, and z velocity components.

>each impact of the molecule with the ly by lz container face reverses the x component of the velocity, so the change in momentum dp is given by dp=(-mu1)-mu1=-2mu1

>the time between successive impacts t is given by t=2lx/u1

>using Newton's second law, the force F1 on a molecule is given by F1=-2mu1/(2lx/u1)=-mu12/lx

>using Newton's third law, the force Fs on the face surface is given by Fs=mu12/lx

>the pressure p1 exerted by the molecule on the impact face is given by p1=Fs/area of impact face=mu12/lxlylz=mu12/V where V is the container volume

>the total pressure p exerted by N molecules on the impact face is given by p=mu12/V + mu22/V + mu32/V +...+ mun2/V=m/V(u12 + u22 + u32+...+ un2)=Nm/V(u2) where u is the mean u component speed

>the motion of molecules is random meaning there is no preferred direction so p=Nm/3V(u2+v2+w2)=Nm/3V(crms2) where crms is the root mean square speed given by crms2=1/N(c12+c22​​​​​​​+c32 +…+cn2)

MV
Answered by Maryna V. Physics tutor

7843 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

By considering Newton's second law and his law of gravitation, derive an expression for gravitational field strength g in terms of its mass, m, the distance from its center of mass, r, and the gravitational constant, G.


How can an object be accelerating when it's velocity is constant, and how does centripetal acceleration work.


One of the decays of potassium (A=40, Z=19) results in an excited argon atom with excess energy of 1.50 Mev. In order to be stable, it emits a gamma photon. What frequency and wavelength has this gamma photon?


If photons are little particles emitted by atoms, where were they before they got emitted?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning