Integrate 5cos(3x - 1) with respect to x

Firstly, we may simplify the expression by factoring out any constants. In this case 5 can be factored out. 

5 ∫ cos(3x-1) dx 

For the integrand cos(3x -1), we can use a simple u-substitution. Where u = 3x -1 and du = 3dx. 

Our integral is then simplified to 5 ∫ cos(u) du/3

The integral of cos(u) is equal to sin(u)

And therefore the solution becomes: (5/3)*sin(u) + constant

Subsituting for u: (5/3)*sin(3x-1) + constant

Answered by Rian M. Maths tutor

5093 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is dy/dx when y=ln(6x)?


Integration of ln(x)


Write 9sin(x) + 12 cos(x) in the form Rsin(x+y) and hence solve 9sin(x) + 12 cos(x) = 3


Differentiate sin3x-3x= f(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences