Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units

F=GMm/r2=mv2/r, v=2pir/t

equating the two values for F and remembering to include the equation for v, GMm/r^2 = m(2pir/t^2)^2/r. Rearranging to find t^2, t^2 = 4pi^2r^3/GM where 4pi^2/GM equals the constant k. Therefore for the purpose of the question, k = 2.97x10^-19s^-2m^-3.

SB
Answered by Sam B. Physics tutor

15007 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do I calculate the hydrostatic pressure?


How do you prove Kepler's Third Law?


A cylindrical rod of radius 7mm and Young’s Modulus 70 GPa has a weight F applied to it. The material experiences a strain of 0.2%. What force has been applied?


A guitar string 0.65m long vibrates with a first harmonic frequency of 280Hz. Mary measures 1m of the string and discovers that it weighs 8.0x10^-4 kg. What is the tension in the guitar string?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences