Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units

F=GMm/r2=mv2/r, v=2pir/t

equating the two values for F and remembering to include the equation for v, GMm/r^2 = m(2pir/t^2)^2/r. Rearranging to find t^2, t^2 = 4pi^2r^3/GM where 4pi^2/GM equals the constant k. Therefore for the purpose of the question, k = 2.97x10^-19s^-2m^-3.

Answered by Sam B. Physics tutor

14472 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The braking distance of a road train travelling at 15m/s is 70m. Assuming that the same braking force is applied at all speeds, show that the braking distance of a road train when travelling at 25m/s is about 190m.


People A and B are taking a lift of mass 500 kg which has constant acceleration and the force from the rope that pulls it is 7500 N. The scales where the people stand show a reading of 720 N and 500 N.


Why is the index of refraction important for light passing between two materials?


What is an inertial frame of reference?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences