Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units

F=GMm/r2=mv2/r, v=2pir/t

equating the two values for F and remembering to include the equation for v, GMm/r^2 = m(2pir/t^2)^2/r. Rearranging to find t^2, t^2 = 4pi^2r^3/GM where 4pi^2/GM equals the constant k. Therefore for the purpose of the question, k = 2.97x10^-19s^-2m^-3.

SB
Answered by Sam B. Physics tutor

16938 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A diver of mass 60kg stands on the end of a diving board (2m in length). Calculate the upward force exerted on the retaining spring which is 30cm from the start of the diving board.


Why does an absorption spectrum (of eg Helium) show dark lines?


An electron is accelerated through a uniform electric field of strength, E= 20 [N/C]. Determine the speed after the the electron travels 0.5 m from rest.


What is the difference between nuclear fusion and nuclear fission?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning