Newton's Law of Gravitation states: F=GMm/r^2, where G is the gravitational constant (6.67×10−11m^3kg^−1s^−2). Kepler's Third Law, states t^2=kR^3. The mass of the sun is 1.99x10^30kg. Find the value of k and its units

F=GMm/r2=mv2/r, v=2pir/t

equating the two values for F and remembering to include the equation for v, GMm/r^2 = m(2pir/t^2)^2/r. Rearranging to find t^2, t^2 = 4pi^2r^3/GM where 4pi^2/GM equals the constant k. Therefore for the purpose of the question, k = 2.97x10^-19s^-2m^-3.

Answered by Sam B. Physics tutor

13534 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The Σ0 baryon, composed of the quark combination uds, is produced through the strong interaction between a π+ meson and a neutron. π+ + n →Σ0 + X What is the quark composition of X?


Why is the refractive index of water bigger than that of air?


State Faraday's law of electromagnetic induction


How do you work out the direction and strength of the force on a current carrying wire in a magnetic field?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences