Show, by counter-example, that the statement "If cos(a) = cos(b) then sin(a) = sin(b)" is false.

Let a=60 and b=300.

Then cos(a)=cos(60)=0.5 and cos(b)=cos(300)=0.5, therefore cos(a)=cos(b).

Then sin(a)=sin(60)=sqrt(3)/2 and sin(b)=sin(300)=-sqrt(3)/2, therefore sin(a)=sin(b) is incorrect.

Therefore we have a contradiction, and the statement is false.

Answered by Osian G. Maths tutor

3751 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent line to the curve y = 2x^2 - 4x + 3 at the point (3,9)


Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5


Find the equation of the tangent line to the graph of y=2x^4-7x^3+x^2+3x when x=5


How does a hypothesis test work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences