find dy/dx at t, where t=2, x=t^3+t and y=t^2+1

We know from simple fraction rules that dy/dx=(dy/dt)/(dx/dt). dy/dt=2t, dx/dt=3t^2+1. Therefore, dy/dx=2x2/12+1=4/13

Answered by Niamh O. Maths tutor

5309 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the integral of 2x^5 - 1/4x^3 - 5


Simplify (3x^2 - 6x)/ (6x^3 - 19x^2 + 9x +10)


(ii) Prove by induction that, for all positive integers n, f(n) = 3^(3n–2) + 2^(3n+1) is divisible by 19


Solve x^2=4(x-3)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences