Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?

As Q3 remains stationary, it is clear that it is not accelerating. Thus we can deduce from Newton's second law that there is no resultant force acting upon the charge. However there are still electrostatic forces acting on the charge from Q1 and Q2. Thus as there is no resultant forces, we can deduce that the force between Q1 and Q3 is equal to the force between Q2 and Q3. Knowing this we can use coulomb's law to equate the two forces and rearrange for the desired ratio. F(1,3) = F(2,3). If we call the distance between Q2 and Q3 d, and the distance between Q1 and Q3 s, then: k*(4q2)/s2 = k*(6q2)/d2 where we are trying to solve for d/s. Rearranging gives d/s = (3)1/2.

Answered by Hugh R. Physics tutor

3023 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

If a bulb has a current of 20mA and voltage of 5V, and the current cost of electricity is £3 for a kW/hour. How much money would you spend to power the bulb for 8 hours? Are these good estimates for the current, voltage and cost of electricity?


Can a projectile of speed 10m/s at an angle of 45° to the horizontal following a path perpendicular to a wall 8m away and 6m high reach beyond the wall? Justify your answer. Take g as 10m/s/s


What are the differences between standing waves and progressive waves?


A DVD is dropped from rest. The DVD does not reach terminal velocity before it hits the ground. Explain how the acceleration of the DVD varies from the instant it is dropped until just before it hits the ground.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences