Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?

As Q3 remains stationary, it is clear that it is not accelerating. Thus we can deduce from Newton's second law that there is no resultant force acting upon the charge. However there are still electrostatic forces acting on the charge from Q1 and Q2. Thus as there is no resultant forces, we can deduce that the force between Q1 and Q3 is equal to the force between Q2 and Q3. Knowing this we can use coulomb's law to equate the two forces and rearrange for the desired ratio. F(1,3) = F(2,3). If we call the distance between Q2 and Q3 d, and the distance between Q1 and Q3 s, then: k*(4q2)/s2 = k*(6q2)/d2 where we are trying to solve for d/s. Rearranging gives d/s = (3)1/2.

HR
Answered by Hugh R. Physics tutor

4269 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 4 metre long bar rotates freely around a central pivot. 3 forces act upon it: 7N down, 2m to the left of the pivot; 8N up, 1m to the left of the pivot; 4N up, 1m to the right of the pivot. Apply one additional force to place the bar in equilibrium.


In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.


Discuss the difference between sharpness and contrast in x-ray imaging


A fluorescent light uses a lining to emit visible light, explain why this is necessary and how it works.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning