Differentiate with respect to x: y = ln(x^2+4*x+2).

Let u = x2+4x+2 so y = ln(u).

Then dy/du = 1/u and du/dx = 2x+4.

Using the chain rule we have:

dy/dx = (dy/du)*(du/dx)

= (1/u)*(2x+4)

= (2x+4)/(x2+4x+2).

OL
Answered by Okim L. Maths tutor

4446 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a good method to go about sketching a polynomial?


Show that: [sin(2a)] / [1+cos(2a)] = tan(a)


Differentiate sin(x)cos(x) with respect to x?


Express 6cos(2x) + sin(x) in terms of sin(x), hence solve the equation 6cos(2x) + sin(x) = 0 for 0<x<360


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences