Differentiate with respect to x: y = ln(x^2+4*x+2).

Let u = x2+4x+2 so y = ln(u).

Then dy/du = 1/u and du/dx = 2x+4.

Using the chain rule we have:

dy/dx = (dy/du)*(du/dx)

= (1/u)*(2x+4)

= (2x+4)/(x2+4x+2).

Answered by Okim L. Maths tutor

4084 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 4(cosec x)^2 - (cot x)^2 = k, express sec x in terms of k.


Find the all the angles of a triangle with side lengths of 8cm, 11cm and 11cm.


How do you divide polynomials? How do you do it with remainder?


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences