Differentiate with respect to x: y = ln(x^2+4*x+2).

Let u = x2+4x+2 so y = ln(u).

Then dy/du = 1/u and du/dx = 2x+4.

Using the chain rule we have:

dy/dx = (dy/du)*(du/dx)

= (1/u)*(2x+4)

= (2x+4)/(x2+4x+2).

OL
Answered by Okim L. Maths tutor

4906 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 3 sin^2 theta = 4 cos theta − 1 for 0 ≤ theta ≤ 360


How do you differentiate y=ln(x)


Why do you not add the 'plus c' when finding the area under a graph using integration even though you add it when normally integrating?


Find the finite area enclosed between the curves y=x^2-5x+6 and y=4-x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning