Differentiate with respect to x: y = ln(x^2+4*x+2).

Let u = x2+4x+2 so y = ln(u).

Then dy/du = 1/u and du/dx = 2x+4.

Using the chain rule we have:

dy/dx = (dy/du)*(du/dx)

= (1/u)*(2x+4)

= (2x+4)/(x2+4x+2).

Answered by Okim L. Maths tutor

4260 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Split (3x-4)/(x+2)(x-3) into partial fractions


Find where the curve 2x^2 + xy + y^2 = 14 has stationary points


Use integration by parts to integrate the following function: x.sin(7x) dx


A particle is in equilibrium under the action of four horizontal forces of magnitudes 5 newtons acting vertically upwards ,8 newtons acting 30 degrees from the horizontal towards the left,P newtons acting vertically downwards and Q newtons acting to right


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences