Find the indefinite integral of sin(2x)(cos^2(x)) with respect to x.

We know from trigonmetric identities that cos(2x) = 2cos^2(x) -1, therefore cos^2(x) = 0.5(1+cos(2x)).

Subbing this in gives the following integrand: 0.5(1+cos(2x))sin(2x).

We can now split the integral into the sum of two simpler ones with integrands 0.5sin(2x) and 0.5sin(2x)cos(2x), the latter of which is equal to 0.25sin(4x).

These integrate nicely to -0.25cos(2x)-(1/16)cos(4x) + c where c is the constant of integration.

PP
Answered by Patrick P. Maths tutor

5646 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).


How do you intergrate ln(x)?


How to integrate ln(x)


Consider f(x)=a/(x-1)^2-1. For which a>1 is the triangle formed by (0,0) and the intersections of f(x) with the positive x- and y-axis isosceles?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning