Find the indefinite integral of sin(2x)(cos^2(x)) with respect to x.

We know from trigonmetric identities that cos(2x) = 2cos^2(x) -1, therefore cos^2(x) = 0.5(1+cos(2x)).

Subbing this in gives the following integrand: 0.5(1+cos(2x))sin(2x).

We can now split the integral into the sum of two simpler ones with integrands 0.5sin(2x) and 0.5sin(2x)cos(2x), the latter of which is equal to 0.25sin(4x).

These integrate nicely to -0.25cos(2x)-(1/16)cos(4x) + c where c is the constant of integration.

Answered by Patrick P. Maths tutor

4736 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve algebraically: 2x - 5y = 11, 3x + 2y = 7


How do polar coordinate systems work?


A ball is kicked and has an instantaneous velocity of 19.6m/s at an angle of 30 degrees to the horizontal. A target lies flat on the ground in the direction the ball is kicked and lies at a distance of (98/5)*(3^1/2)m. Does the ball land on the target?


Show that sqrt(27) + sqrt(192) = a*sqrt(b), where a and b are prime numbers to be determined


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences