Find the indefinite integral of sin(2x)(cos^2(x)) with respect to x.

We know from trigonmetric identities that cos(2x) = 2cos^2(x) -1, therefore cos^2(x) = 0.5(1+cos(2x)).

Subbing this in gives the following integrand: 0.5(1+cos(2x))sin(2x).

We can now split the integral into the sum of two simpler ones with integrands 0.5sin(2x) and 0.5sin(2x)cos(2x), the latter of which is equal to 0.25sin(4x).

These integrate nicely to -0.25cos(2x)-(1/16)cos(4x) + c where c is the constant of integration.

PP
Answered by Patrick P. Maths tutor

4962 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x)= x^3 + x^(1/3)-2


How can the trapezium rule be used to estimate a definite integral?


Two lines have equations r_1=(1,-1,2)+a(-1,3,4) and r_2=(c,-4,0)+b(0,3,2). If the lines intersect find c:


Find the inverse of y = (5x-4) / (2x+3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences