Factorise and solve the quadratic equation x^2 + 6x + 8 = 0

Theory

Problems like this need to be broken down into steps: i) Factorise, ii) solve and iii) check. The aim of this question is to find values of x which satisfy the quadratic equation, i.e. when we substitute our solutions of x into x2 + 6x + 8, we get zero. Quadratic factorisation means converting a quadratic equation (an equation with x2 in, as provided in the question) into the form: (ax+b)(cx+d) = 0, where a, b, c and d are numbers to be determined. Since 0x0 = 0 we can assume (ax+b) = 0 and (cx+d) = 0 and solve for x in both cases.

Solution

i) Factorise

We want to convert out quadratic equation into (ax+b)(cx+d) = 0. Firstly, multiply out the brackets using the F.O.I.L method – multiply the First terms in each bracket, e.g. ax times cx to give acx2, the Outer terms, Inner terms and Last terms, and finally add them all together. This returns acx2 + adx + bcx + bd = 0, which we can simplify to ax2 + (ad+bc)x + bd = 0.

Now we compare our quadratic equation x2 + 6x + 8 = 0 to acx2 + (ad+bc)x + bd = 0.

Notice that the coefficient (number in front) of the x2 term is 1 in the first equation and ac in the second equation. Hence, ac = 1. We can now set a = 1 and c = 1.

Next, we have (ad + bc) = 6. Using a = 1 and c = 1, this can be simplified to d + b = 6. Similarly, bd = 8.

By trial and error, we can find two numbers that multiply together to make 8 and add together to make 6. These are d = 4 and b = 2.

Substituting a = 1, b = 2, c = 1 and d = 4 into (ax+b)(cx+d) = 0 our factorised quadratic equation is: (x+2)(x+4) = 0.

ii) Solve

Since both brackets in (x+2)(x+4) = 0 are just two numbers multiplied together, both brackets must separately equal zero. Therefore, x+2 = 0 and x+4 = 0, which means x = -2 and x = -4.

iii) Check

Substituting x = -2 and x = -4 into our original equation should return zero:

When x = -2,

(-2)2 + 6(-2) + 8 = 4 – 12 + 8 = 0

When x = -4,

(-4)2 + 6(-4) + 8 = 16 – 24 + 8 = 0

This is correct, and our solution is: x = -2 and x = -4.

With practise this becomes much easier and steps can be skipped. For example, we would skip straight to comparing x2 + 6x + 8 = 0 to acx2 + (ad+bc)x + bd = 0, and guessing values for a, b, c and d.

Answered by Tutor87306 D. Maths tutor

8032 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I can't figure out this question to do with VAT. VAT is charged at 20%. A TV is for sale for £650 inc. VAT in Good Electronics and the same TV is for sale £495 exc. VAT in Wright's Electricals, where is it cheaper?


Find the complex solutions for the following equation: -3x^2+4x+4=0


Eleri invests £3700 for 3 years at 2% per annum compound interest. Calculate the value of her investment at the end of the 3 years. Give your answer correct to the nearest penny.


In 2017 the number of teachers in a school was 20. The number of teachers doubles each year. If in 2019 3/5 of the teachers are female how many male teachers are there in 2019?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences