Factorise and solve the quadratic equation x^2 + 6x + 8 = 0

Theory

Problems like this need to be broken down into steps: i) Factorise, ii) solve and iii) check. The aim of this question is to find values of x which satisfy the quadratic equation, i.e. when we substitute our solutions of x into x2 + 6x + 8, we get zero. Quadratic factorisation means converting a quadratic equation (an equation with x2 in, as provided in the question) into the form: (ax+b)(cx+d) = 0, where a, b, c and d are numbers to be determined. Since 0x0 = 0 we can assume (ax+b) = 0 and (cx+d) = 0 and solve for x in both cases.

Solution

i) Factorise

We want to convert out quadratic equation into (ax+b)(cx+d) = 0. Firstly, multiply out the brackets using the F.O.I.L method – multiply the First terms in each bracket, e.g. ax times cx to give acx2, the Outer terms, Inner terms and Last terms, and finally add them all together. This returns acx2 + adx + bcx + bd = 0, which we can simplify to ax2 + (ad+bc)x + bd = 0.

Now we compare our quadratic equation x2 + 6x + 8 = 0 to acx2 + (ad+bc)x + bd = 0.

Notice that the coefficient (number in front) of the x2 term is 1 in the first equation and ac in the second equation. Hence, ac = 1. We can now set a = 1 and c = 1.

Next, we have (ad + bc) = 6. Using a = 1 and c = 1, this can be simplified to d + b = 6. Similarly, bd = 8.

By trial and error, we can find two numbers that multiply together to make 8 and add together to make 6. These are d = 4 and b = 2.

Substituting a = 1, b = 2, c = 1 and d = 4 into (ax+b)(cx+d) = 0 our factorised quadratic equation is: (x+2)(x+4) = 0.

ii) Solve

Since both brackets in (x+2)(x+4) = 0 are just two numbers multiplied together, both brackets must separately equal zero. Therefore, x+2 = 0 and x+4 = 0, which means x = -2 and x = -4.

iii) Check

Substituting x = -2 and x = -4 into our original equation should return zero:

When x = -2,

(-2)2 + 6(-2) + 8 = 4 – 12 + 8 = 0

When x = -4,

(-4)2 + 6(-4) + 8 = 16 – 24 + 8 = 0

This is correct, and our solution is: x = -2 and x = -4.

With practise this becomes much easier and steps can be skipped. For example, we would skip straight to comparing x2 + 6x + 8 = 0 to acx2 + (ad+bc)x + bd = 0, and guessing values for a, b, c and d.

Answered by Tutor87306 D. Maths tutor

7477 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Nadia has £5 to buy pencils and rulers. Pencils are 8p each. Rulers are 30p each. She says “I will buy 15 pencils. Then I will buy as many rulers as possible. With my change I will buy more pencils.” How many pencils and how many rulers does she buy?


Find the equation of the tangent to y = 2x^2 + 7 at x = 3.


what is the determinant of a 2x2 matrix


Factorise x^2 - 8x - 20


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences