The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.

All exponential equations can be reduced to the form m=m0ekt, where m0 is the initial mass. This means for our equation the initial mass is 250g. If the mass has doubled in size, then m now equals 2*250 = 500g. Plugging this into our exponential equation gives us 500=250e0.021t , which we can then work through as follows to re-arrange for t:

e0.021t = 500/250 = 2

0.021t = ln(2)

t = ln(2) / 0.021 = 33.0070086 = 33.0 hours (3 significant figures)

TJ
Answered by Tom J. Maths tutor

7989 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let C : x^2-4x+2k be a parabola, with vertex m. By taking derivatives or otherwise discuss, as k varies, the coordinates of m and, accordingly, the number of solutions of the equation x^2-4x+2k=0. Illustrate your work with graphs


Find the equation of the line through the following points: (-2, -3) and (1, 5)


a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


How would you express (11+x-x^2)/[(x+1)(x-2)^2] in terms of partial fractions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences