If z is a complex number, solve the equation (z+i)* = 2iz+1 where the star (*) denotes the complex conjugate.

For questions like these it's easier to first rewrite z as z=x+iy. 

Once we plug this back into the original equation we get x-iy-i = 2ix-2y+1

Rearranging both sides to group together the real and imaginary terms we get (x+2y) - i(y+2x+1) = 1.

We can now equate the real and imaginary terms on the left hand and right hand side to get 2 simultaneous equations we can solve for. In this case they are x+2y=1 and y+2x+1 = 0.

Rewriting the first one as x = 1- 2y, we can plug this into the second equation to get y+2-4y+1=0 --> 3y=3 --> y=1.

From this we can derive x = 1 - 2(1) = -1.

Therefore the complex number z = -1 + i.

Answered by Aysha A. Maths tutor

10360 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Maths


The curve has the equation y= (x^3)/(2x-1). Find dy/dx.


How do I integrate ∫ xcos^2(x) dx ?


The line AB has equation 5x + 3y + 3 = 0 . (a) The line AB is parallel to the line with equation y = mx + 7 . Find the value of m. [2 marks] (b) The line AB intersects the line with equation 3x -2y + 17 = 0 at the point B. Find the coordinates of B.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences