If z is a complex number, solve the equation (z+i)* = 2iz+1 where the star (*) denotes the complex conjugate.

For questions like these it's easier to first rewrite z as z=x+iy. 

Once we plug this back into the original equation we get x-iy-i = 2ix-2y+1

Rearranging both sides to group together the real and imaginary terms we get (x+2y) - i(y+2x+1) = 1.

We can now equate the real and imaginary terms on the left hand and right hand side to get 2 simultaneous equations we can solve for. In this case they are x+2y=1 and y+2x+1 = 0.

Rewriting the first one as x = 1- 2y, we can plug this into the second equation to get y+2-4y+1=0 --> 3y=3 --> y=1.

From this we can derive x = 1 - 2(1) = -1.

Therefore the complex number z = -1 + i.

AA
Answered by Aysha A. Maths tutor

13441 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I maximise my performance and efficiency in an exam?


Find the binomial expansion of (-8+4x)^(2/3) up to and including the term in x^2.


What is dy/dx when y=ln(6x)?


A uniform ladder is leaning against a smooth wall on a rough ground. The ladder has a mass of 10 kilograms and is 4 metres long. If the ladder is in equilibrium, state an equation for the coefficient of friction of the ground


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning