Find dy/dx at t=3, where x=t^3-5t^2+5t and y=2t^2

Using the product rule, we find that dy/dx= dy/dt multiplied by dt/dx, where dt/dx is the reciprocal of dx/dt

dx/dt= 3t^2-10t+5, dy/dt= 4t

At t=3, dx/dt= 3(3)^2-10(3)+5=2,  dy/dt= 4(3)= 12

Therefore, dt/dx= 1/2

dy/dx= dy/dt x dt/dx= 12 x 1/2= 6

OA
Answered by Oore A. Maths tutor

4967 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) with respect to x. Find the stationary value and state if it is a maxima, minima or point of inflection f(x) = 6x^3 + 2x^2 + 1


Differentiate ln(x)/x


Prove the identity: sin^2(x)+cos^2(x) = 1


A mass of 3kg rests on a rough plane inclined at 60 degrees to the horizontal. The coefficient of friction is 1/5. Find the force P acting parallel to the plane applied to the mass, in order to just prevent motion down the plane.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning