Find dy/dx at t=3, where x=t^3-5t^2+5t and y=2t^2

Using the product rule, we find that dy/dx= dy/dt multiplied by dt/dx, where dt/dx is the reciprocal of dx/dt

dx/dt= 3t^2-10t+5, dy/dt= 4t

At t=3, dx/dt= 3(3)^2-10(3)+5=2,  dy/dt= 4(3)= 12

Therefore, dt/dx= 1/2

dy/dx= dy/dt x dt/dx= 12 x 1/2= 6

Answered by Oore A. Maths tutor

4036 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I multiply 2 matrices?


what is the equation of the normal line to the curve y=x^2-4x+3 at the point (5,8)?


The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


Find, in radians, the general solution of the equation cos(3x) = 0.5giving your answer in terms of pi


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences